SIGNIFOR LAR (pasireotide) for injectable suspension Signifor

Rx Form Download Rx FORM Contact form CONTACT

In a study with patients inadequately controlled with a first-generation SSA... PATIENTS WHO SWITCHED TO SIGNIFOR LAR WERE MORE LIKELY TO REACH BIOCHEMICAL CONTROL3

SIGNIFOR LAR was directly compared with octreotide LAR and lanreotide autogel23

A prospective, multicenter, randomized, parallel-group, phase 3 study in patients who were inadequately controlled* with and switched from a first-generation SSA23

Illustration of study design
Illustration of study design

Study Design: A multicenter, randomized, three-arm study conducted in patients with acromegaly inadequately controlled on a first-generation SSA. Patients were randomized to double-blind SIGNIFOR LAR 40 mg (n=65) or SIGNIFOR LAR 60 mg (n=65) or to continued open-label pretrial SSA therapies at maximal or near maximal doses (n=68). A total of 181 patients completed the 6-month trial.23

*Inadequately controlled acromegaly defined as GH >2.5 μg/L; IGF-1 >1.3 ULN.

Patients inadequately controlled on another SSA who switched to SIGNIFOR LAR treatment were more likely to experience biochemical control than those who remained on their previous SSA3

Clinical trial chart data
Clinical trial chart data

†Defined as mean GH concentration <2.5 μg/L and normalized IGF-1 concentration (between the upper and the lower limits of normal).
‡Primary endpoint (patients with IGF-1 < lower limit of normal [LLN] were not considered as “responders”).
§For one active comparator, the maximum approved US dose was not used, but most patients received the most common US dose for acromegaly.

IGF-1 and GH Reduction

SIGNIFOR LAR reduced IGF-1 and GH in patients previously inadequately controlled on a first-generation SSA23,II

Mean Reduction in IGF-1 and GH charts Mean Reduction in IGF-1 and GH charts

Individualizing Treatment for the Patient with Acromegaly

Presented by Michael H. Shanik, MD, FACP, FACE

WATCH THE ON DEMAND VIDEO
Tumor Reduction

Additional reductions in tumor volume were seen in some patients who switched to SIGNIFOR LAR23,¶

The proportion of patients with >25% reduction in tumor volume was assessed at 6 months (N=198)

Chart of proportion of patients with reduction in tumor volume >25%
Chart of proportion of patients with reduction in tumor volume >25%

¶In a prospective, multicenter, randomized, parallel-group, phase 3 study in patients who were inadequately controlled with and switched from a first-generation SSA.23

Adverse events documented in patients inadequately controlled on a first-generation SSA

Adverse reactions chart Adverse reactions chart

#Diabetes mellitus includes the terms diabetes mellitus and type 2 diabetes mellitus.
SEE SECTION 6.1 IN FULL PRESCRIBING INFORMATION FOR COMPLETE ADVERSE REACTION TABLE.

Indications and Usage

SIGNIFOR LAR (pasireotide) is a somatostatin analog indicated for the treatment of:

Important Safety Information

Warnings and Precautions

Indications and Usage

SIGNIFOR LAR (pasireotide) is a somatostatin analog indicated for the treatment of:

Important Safety Information

Warnings and Precautions


Adverse Reactions


Drug Interactions


Females and Males of Reproductive Potential


References: 1. Gatto F, Barbieri F, Arvigo M, et al. Biological and biochemical basis of the differential efficacy of first and second generation somatostatin receptor ligands in neuroendocrine neoplasms. Int J Mol Sci. 2019;20(16):3940. 2. Poullot A-G, Chevalier N. New options in the treatment of Cushing’s disease: a focus on pasireotide. Res Rep Endocr Disord. 2013;3:31-38. 3. SIGNIFOR LAR (pasireotide) for injectable suspension, for intramuscular use [prescribing information]. Lebanon, NJ: Recordati Rare Diseases Inc.; 2020. 4. Acromegaly. UCLA Health System. https://www.uclahealth.org/medical-services/surgery/endocrine-surgery/patient-resources/patient-education/endocrine-surgery-encyclopedia/acromegaly. Accessed August 23, 2022. 5. Broder MS, Chang E, Cherepanov D, Neary MP, Ludlam WH. Incidence and Prevalence of Acromegaly in the United States: A Claims-Based Analysis. AACE Endocrine Practice. https://www.endocrinepractice.org/article/S1530-891X(20)35591-9/pdf. Published November 1, 2016. Accessed August 23, 2022. 6. Christofides EA. Clinical importance of achieving biochemical control with medical therapy in adult patients with acromegaly. Patient Prefer Adherence. 2016;10:1217-1225. 7. Acromegaly. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/endocrine-diseases/acromegaly. Accessed August 23, 2022. 8. Carmichael JD, Bonert VS, Nu.o M, Ly D, Melmed S. Acromegaly clinical trial methodology impact on reported biochemical efficacy rates of somatostatin receptor ligand treatments: a meta-analysis. J Clin Endocrinol Metab. 2014;99(5):1825-1833. 9. Carroll PV, Jenkins PJ. Acromegaly. In: Feingold KR, Anawalt B, Boyce A, et al, eds. Endotext [Internet]. South Dartmouth, MA: MDText.com, Inc.; 2016 10. Giustina A, Barkhoudarian G, Beckers A, et al. Multidisciplinary management of acromegaly: A consensus. Rev Endocr Metab Disord. 2020;21(4):667-678. 11. Katznelson L, Laws ER Jr, Melmed S, et al. Endocrine Society Acromegaly: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(11):3933-3951. 12. Lavrentaki A, Paluzzi A, Wass JA, Karavitaki N. Epidemiology of acromegaly: review of population studies. Pituitary. 2017;20(1):4-9. 13. SOMATULINE® DEPOT (lanreotide) injection, for subcutaneous use [prescribing information]. Cambridge, MA: Ipsen Biopharmaceuticals, Inc.; 2019 14. SANDOSTATIN LAR DEPOT (octreotide acetate) for injectable suspension, for gluteal intramuscular use [prescribing information]. East Hanover, NJ: Novartis Pharmaceuticals Corporation; 2021. 15. Coopmans EC, Muhammad A, van der Lely AD, et al. How to position pasireotide LAR treatment in acromegaly. J Clin Endocrinol Metab. 2019;104(6):1978-1988. 16. Shanik MH, Cao PD, Ludlam WH. Historical response rates of somatostatin analogues in the treatment of acromegaly: a systematic review. Endocr Pract. 2016;22(3):350-356. 17. Casar-Borota O, Heck A, Schulz S, et al. Expression of SSTR2a, but not of SSTRs 1, 3, or 5 in somatotroph adenomas assessed by monoclonal antibodies was reduced by octreotide and correlated with the acute and long-term effects of octreotide. J Clin Endocrinol Metab. 2013;98(11):E1730-E1739. 18. Silverstein JM. Hyperglycemia induced by pasireotide in patients with Cushing’s disease or acromegaly. Pituitary. 2016;19:536-543. 19. Zambre Y, Ling Z, Chen MC, et al. Inhibition of human pancreatic islet insulin release by receptor-selective somatostatin analogs directed to somatostatin receptor subtype 5. Biochem Pharmacol. 1999;57(10):1159-1164. 20. Singh V, Brendel MD, Zacharias S, et al. Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets. J Clin Endocrinol Metab. 2007;92(2):673-680. 21. Breitschaft A, Hu K, Hermosillo Res.ndiz K, Darstein C, Golor G. Management of hyperglycemia associated with pasireotide (SOM230): healthy volunteer study. Diabetes Res Clin Pract. 2014;103(3):458-465. 22. Henry RR, Ciaraldi TP, Armstrong D, Burke P, Ligueros-Saylan M, Mudaliar S. Hyperglycemia associated with pasireotide: results from a mechanistic study in healthy volunteers. J Clin Endocrinol Metab. 2013;98(8):3446-3453. 23. Gadelha MR, Bronstein MD, Brue T, et al. Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2014;2(11):875-884. 24. Colao A, Bronstein MD, Freda P, et al. Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab. 2014;99(3):791-799. 25. Gadelha MR, Gu F, Bronstein MD, et al. Risk factors and management of pasireotide-associated hyperglycemia in acromegaly. Endocr Connect. 2020;9(12):1178-1190. 26. American Diabetes Association. Standards of Medical Care in Diabetes-2020 Abridged for Primary Care Providers. Clin Diabetes. 2020;38(1):10-38. doi:10.2337/cd20-as01. 27. Samson SL, Gu F, Feldt-Rasmussen U, Zhang S, Yu Y, et al. Managing pasireotide-associated hyperglycemia: a randomized, open-label, Phase IV study. Pituitary. 2021;24(6):887-903.